
Disclaimer: It is often possible to
do things in Visionaire Studio in
multiple ways. This is no extensive
manual that covers all possibili-
ties. It is just a guide to show how I
do things.

– Esmeralda

Tutorial:
Building a Save/LoadMenu
inVisionaire Studio 5

1. Bare Necessities

There is not much needed to get a working save/load menu, if you
strip away feedback for the player and amenities: save slots and but-
tons to trigger saving and loading.

1.1 Themenu scene
First let’s add amenu. Since creating save slots isn’t possible on regular
scenes, it has to be a “Menu” type scene.

► In “Scenes”, click on the green [+] and choose “Menu” (Fig. 1-1).

Next step is setting up the menu properties
(Fig. 1-2):

► 1. Name your menu (I called it “SaveLoad”).

► 2. Open the scene properties (gear icon).

► 3. Add the background image of the menu. In
the demo project it’s called “menu_bg.png” (lo-
cated in the “Menu” folder).

► 4. Choose the menu cursor.

► 5. “Scroll savegames by”defines by howmany
slots the savegames will move when you click
on a left/right (or up/down) arrow.
We will make use of this feature in our “Basic
Version” (chapter 2). Keep the default value (1)
for the demo game.

► 6. Select a savegame font.
If you select a font here, the engine will auto-
matically display a timestamp underneath the
save slot. If you don’t want that, just leave the
field empty. I created a font called “savegame_
font” that’s a little smaller than the regular
game font.

This tutorial explains the creation of a save/load menu on the basis of
a little demo game. The game project zip file comes with 4 different
.ved files that build on each other – from the absolute basics to amenu
with some bells & whistles:

1. Bare Necessities ................................................................................................ 1
2. Basic Version....................................................................................................... 6
3. Confirm It ..........................................................................................................11
4. Some Bells &Whistles ...................................................................................14

It’s assumed that you have worked with the Visionaire editor before.

Fig. 1-1: Add amenu

Fig. 1-2: Set up themenu properties

1
Bare Necessities



Visionaire Studio – Save/Load Tutorial
1. Bare Necessities

2

1.2 Save slots
Save slots (aka. savegame areas) are rectangular ar-
eas on the menu to hold the savegames. Each slot
will show an in-game screenshot when used/occu-
pied.

Now how do the save slots exactly work in the
game?

To save a game the player has to select a save slot
first by clicking on it. The engine will register that
and store the internal slot number to execute a save
(or load, delete) action on it later.

Note that the player won’t get a visible reaction
when hovering over or clicking on a save slot, nei-
ther from the cursor nor from the slot itself.

After having chosen the save slot, the player has to
click on a separate“save”button to execute the save
action. The engine will save the game, take a
screenshot of the scene the current character is in
and place that as a thumbnail in the chosen slot.

However, if there are other free slots prior to the
chosen one, the enginewill automaticallymove the
savegame to the first free slot to leave no gaps.

If the chosen slot is already occupied, the existing
savegame will be overwritten.

Let’s draw the save slots (Fig. 1-3):

► Click on the floppy disk icon.

► Draw the first save slot rectangle onto the menu by clicking and dragging while holding down the
mouse button.

Note that the size of your first save slot will define the thumbnail size for all other slots. So it is not possible
to have different sized thumbnails, even if you draw the following slots smaller or bigger.

The save slots are numbered in the order they are created. That means that you determine the order the save
slots get filled by the order you draw them.

To avoid confusion for the player I recommend sticking to the traditional order (as I did in the demo game,
Fig. 1-4).

► With that in mind, go on and draw the remaining save slots.

Fig. 1-3: Draw the save slots

Fig. 1-4: Save slots 1, 2, 3, and 4 – in a somewhat boring yet distinct order



Visionaire Studio – Save/Load Tutorial
1. Bare Necessities

3

1.3 Save, Load and
Delete buttons
Now we will create the buttons
that execute the actions on the
save slots. We’ll start with “save”
(Fig. 1-5).

► 1. Add a new entry to the
menu’s “Objects” list and
name it (e. g. “btn_save”).

► 2. Add the button image.

► 3. Click on the 4-arrows icon
and drag the button image
to its position.

Fig. 1-6:

► 4. Click on the area icon and
draw the object area around
the button.

► 5. Add an action for the but-
ton in the “Actions” tab and
select “Left click”as its exe-
cution type.

► 6. Add the action part “Load
/Save game” from the
“Savegame”category.

► 7. In the action part, select
the “Save”option.

► Now repeat these steps for the “Load”and
“Delete”buttons.

In short: Create new entries in the “Objects” list,
name them, add the images and place them. Draw
the objects areas and add a“Left click”action.

To save some time, you could also duplicate the
save button and adjust the settings (don’t forget to
move the object area, too, with Ctrl+drag though).

► In the “Left click”action for “Load”, add the ac-
tion part “Load/Save game”again, but select
the “Load”option.

► For the “Delete”button add the action part
“Delete savegame/autosave” instead and se-
lect “Current savegame” in the dropdown
(Fig. 1-7).

That’s basically all that’s really necessary to save,
load and delete a savegame.

Fig. 1-5: Create the save button

Fig. 1-6: Make the save button work

Fig. 1-7: Add the delete button



Visionaire Studio – Save/Load Tutorial
1. Bare Necessities

4

1.4 Moremenu
functions
► To finish our menu, let's add
buttons to quit and resume
the game.

You know the drill, create new
entries in the“Objects” list, name
them and draw the object areas.
I painted the “Quit” and “Re-
sume” buttons onto the menu
background, so no need to add
object images in this example.

► In the “Quit”button action
add the action part “Quit
game” from the“Miscella-
neous”category (Fig 1-8).

To continue playing our game
after saving, we need to have a
possibility to go back to the
scene of our main character.

► Add the action part
“Change to scene of a char-
acter” to our “Resume”but-
ton and select “Current
character” in the dropdown
(Fig. 1-9).

You could choose your main
character by name, if you only
have one playable character, but
“current character” will work in
any case.

1.5 Open themenu
To open the save/load menu in-game we need a button or key action.
I like adding a“Menu”button tomy inventory. But of course you can do
it however you like: a button on a different interface, an action in the
“Key actions” (Game properties) for the “Esc”key…

► In the action of your choice, add an action part “Show scene/
menu” from the“Scene”category (Fig. 1-10).

► In the action part select our save/load menu from the second
dropdown.

In the demo game I use an inventory that slides in from the top (through a special plugin). To click on the menu button
it needs to be fully visible. But I don’t want it to appear on the savegame thumbnail and I don’t want it to be visible when
the savegame is loaded. So I need to slide it out prior to showing the menu. That’s why I added an action to slide it up
again and a small pause to give the engine time to execute before changing to themene scene.

Fig. 1-8: Add the quit button

Fig. 1-9: Add the resume button

Fig. 1-10: Action to show the save/loadmenu



Visionaire Studio – Save/Load Tutorial
1. Bare Necessities

5

1.6 Testing
Let’s do a little test.

► Run the game and click on the button to call the menu scene (in
case of the demo game that’s inside the inventory).

Our menu will show up (Fig. 1-11).

► 1. Click on a save slot (this gets registered by the engine, even if
we can’t see any reaction).

► 2. Click on the “Save”button.

Fig. 1-12: It worked.

Fig. 1-11: Save the game

Fig. 1-12: Upon saving, a screenshot thumbnail apperas in the save slot along with a timestamp



2. Basic Version

Now we got a working save/load menu, but it is not very intuitive to
use yet. How should the player know that they need to click on a slot
first, how should they know if a savegame is selected? And besides, we
only have 4 save slots …

In this “Basic Version”we develop the menu further and

add highlighting to the save slots,
make the buttons responsive,
add arrows to scroll through the (then unlimited number of )
savegames.

2.1 Infinite save slots
Let’s start with making the
amount of save slots infinite by
adding arrows to scroll through
the savegames.

Left button

► 1. Add a new object, call it
“btn_left”, add an image to
it and place it (Fig 2-1).

► 2. Draw an object area.

► 3. Create a “Left click”action
with the action part “Show
next/previous savegames”
and select “Previous”.

We want the scroll arrow to highlight when hovering over it. There are
multiple ways to show different states of a button.

You can use two objects, each holding a different image of the button
and toggle between these objects by linking them to a condition or a
value. Or you can change the opacity of an image with the action part
“Set object visibility”. You can even force the engine to play a certain
frame of an animation linked to that object to display a specific image
(that would require some lines of code though).

I will mainly use values and object visibility in this tutorial.

Fig. 2-2:

► 4. Create a second object
called “gfx_left” and add the
active button image (“in-
ventory_left_active.png”).
This object will not be clickable,
that’s why I use the “gfx_” pre-
fix. This naming convention is
of course optional.

► 5. Place the image in the
same spot as the inactive
one. Use the coordinates at
the top to do it precisely.

The active image needs to be
drawn above the inactive image
to cover it. There are no object
centers in “Menu” type scenes,
so the order in which the images
are drawn solely depends on the
order in the objects list.

► Move the second object
above the first one (if neces-
sary) by using the up/down
arrow icons.

2
Basic Version

Fig. 2-1: Add a savegame scroll button

Fig. 2-2: Add a second object for the highlight (active) state of the button

6



Visionaire Studio – Save/Load Tutorial
2. Basic Version

7

Currently only the active state of
the button would show, be-
cause it’s covering the other
one. We need to hide the active
image by default and show it
only when hovering over the
button (Fig. 2-3).

► Add two actions to the
“btn_left”object – one with
the execution type “Cursor
enters object area”, one with
“Cursor leaves object area”.

► For “Cursor enters object
area”, add the action part
“Set object visibility”, select
the “gfx_left”object and set
the visibility to 100 %.

► Do the same for “Cursor
leaves object area”, but set
the visibility to 0 %.

Reset the buttons

As already mentioned, the ac-
tive state images need to be hid-
den by default. We have to set
their visibility to 0 % at the be-
ginning of the scene, else they
would be active when calling
the menu for the first time.

► Create a “Called by other ac-
tion”action in the scene’s
“Actions” tab (Fig 2-4).

► Name the action “reset_but-
tons”.

► Add two action parts, set-
ting the visibility of “gfx_
left” and“gfx_right” to 0 %.

We will add a few more of these
action parts to that action to re-
set other buttons later.

► Add an action with the exe-
cution type “At beginning of
scene” (Fig 2-5).

► Add the action part “Call/
Quit action”and link it to
the “reset_button”action
with the “Call”option se-
lected.

Right button

Now that the left scrolling button is working, we have to do it all again
for the right button.

► Create the right scrolling arrow just like the left one: select the
right arrow images, choose “Next” instead of “Previous” in step 3,
and select the “gfx_right”object when setting the object visibility.

The arrows will scroll the savegames by 1 to the left/right, because we
didn’t change the default value for the“Scroll savegames by”parameter in
the menu properties (see chapter 1.1, step 5). In case you have other set-
ups of your savegame menu and want to scroll by an entire row or col-
umn, you can set the corresponding number in the properties.

Fig. 2-3: The active button visibility depends on the cursor beingmoved over the object

Fig. 2-4: Reset the button states

Fig. 2-5: Call the reset action when entering themenu



Visionaire Studio – Save/Load Tutorial
2. Basic Version

8

2.2 Enhance other buttons
Now we want to add some features to buttons we
already created in the “Bare Necessities”version.

Hide buttons by condition

The save, load and delete buttons should only show
up when they can be used.

► Add two conditions to the menu and call them
“save_possible?”and“load_delete_possible?”,
both with an initial state of “False” (Fig 2-6).

► Select the “btn_save”object and link it to the
“save_possible?” condition in the object’s prop-
erties.

The button will now only be visible and clickable
when the “save_possible?” condition is true. Do the
same for the load and delete buttons.

► Link both the “btn_load”and the “btn_delete”
buttons to the “load_delete_possible?” condi-
tion. They will be visible and clickable when
the condition “load_delete_possible?” is true.

Highlight the buttons

To give visible feedback when hovering over the buttons, let’s do the
same as for the arrows:

► Add objects for the three buttons called “gfx_save”, “gfx_load”and
“gfx_delete” that hold the active image of these buttons.

► Take care these “gfx_”objects are above the respective “btn_”ob-
jects in the objects list.

► Add“Cursor enters object area”and“Cursor leaves object area”ac-
tions to the “btn_”objects, setting the corresponding“gfx_”ob-
ject’s visibilities to 100 % and 0 %, respectively.

► In the “Left click”action of the save and delete buttons add the
action part “Call/Quit action”and link the “reset_button”action
(Fig. 2-7).

Unlike for the save and delete buttons, there is no need to reset the
buttons after clicking on “Load”, because we instantly leave the menu

upon loading a savegame.

► In the “reset_buttons”action add action parts
to set the new objects “gfx_save”, “gfx_load”
and“gfx_delete” to 0 % visibility (Fig. 2-8).

► Also in the “reset_buttons”action change the
conditions “save_possible?”and“load-
_delete_possible?”back to “False”.

Fig. 2-6: Linking an object to a condition

Fig. 2-8: Reset all button visibilities and conditions

Fig. 2-7: Call the reset action after saving



Visionaire Studio – Save/Load Tutorial
2. Basic Version

9

2.3 Highlight the save slots
A save slot should show a visible reaction when clicked on, so the player knows this is the chosen slot. Since
the slots themselves don’t have the ability to do anything besides holding a savegame, we have to add ob-
jects on top of them, which we can interact with.

Also, we want our save, load, and delete buttons to be visible only if it makes sense to have them available.
Until now, the “save_possible?” and “load_delete_possible?” conditions are not doing much, because they
stay false and thus our three buttons stay hidden. If the player selects an already used save slot, they should
have the option to load or delete that savegame, whereas we don’t want to show these two buttons when
an empty slot is chosen. The save button should show up whenever a slot is selected (if occupied or not).

Fig. 2-9:

► 1. Create a value called “Val-
ue_Saveslot”and set it to -1.
– This value will control
which slot gets highlighted
(“-1”means: none).

► 2. Create a new object and
call it “slot_0”.

► 3. Draw an object area for
“slot_0”around the first save
slot.

► 4. Add a“Left click”action for “slot_0”with the following setup of
action parts:

Set the value “Value_Saveslot” to 0.
Change the condition “save_possible?” to true. – This will make
the save button available.
Add an“If savegame exists”action part and select “Savegame
below cursor”. – This will check if the save slot we clicked on al-
ready holds a savegame (although we placed a clickable object
on the slot’s position, the engine still registers the slot under
the cursor).
Change the condition “load_delete_possible?” to true. – This
will make the load and delete buttons available, if the player
selected a slot that holds a savegame.
“Else”
Change the condition “load_delete_possible?” to false. – This
will hide the load and delete buttons, if the player clicks on an
empty slot again.
“End if”

► Repeat steps 2 to 4 for the three remaining slots (I recommend
duplicating and adjusting the “slot_0”object). In the first action
part change“Value_Saveslot”according to the corresponding slot
number (1 for “slot_1”, …).

We start counting “Value_Saveslot”
with 0 instead of 1, because the en-
gine also starts counting the save
slots with 0. This is not important in
this basic version of the save menu,
so you are free to use the numbers
you like, but in a later version it’s bet-
ter to have the value match the in-
ternal numbering of the engine.

Fig. 2-9: Place an object on a save slot to have something to interact with



Visionaire Studio – Save/Load Tutorial
2. Basic Version

10

Now to the actual highlighting
of the save slots (Fig. 2-10). As
with the buttons highlighting
before, we need another object
to hold our highlight image:

► 1. Create a new object and
call it “gfx_slot_0”.

► 2. Add the highlight image
(“menu_highlight.png”) and
place it on the first save slot.

► 3. Link the “Value_Saveslot”
value to the object and
make it validate for “= 0”.

The highlight object will be visi-
ble, when “Value_Saveslot” is 0.
The value gets changed to 0
when the player clicks on the
“slot_0” object (see previous
page), so this matches up. ► Repeat steps 1 to 3 for the

remaining save slots and
name the objects “gfx_slot1”
to “gfx_slot3” (again, dupli-
cating the existing object
will save you some time).
Add the same highlight im-
age to these objects, place
them on the according slot
and in step 3 set the num-
ber of the slot.

► In the “reset_button”action
add the action part to set
the “Value_Saveslot”value
back to -1 (Fig. 2-12)

2.4 Enhance quit and resume buttons
Let’s quickly add the active states of the quit and re-
sume buttons (which we already created in the pre-
vious version).

We don’t need to add a new object here, because
our background already holds the inactive images
for these buttons.

► Add the active images to “btn_quit” and“btn_
resume”and create “Cursor enters object area”
and“Cursor leaves object area”actions where
you set “btn_quit” and“btn_resume” to 100 %
and 0 %, respectively (Fig. 2-11).

The buttons will still work, evenwhen their visibility
is set to 0 %.

► Add these two objects to our list of buttons to
reset the visibility (Fig. 2-12).

Fig. 2-10: Add a highlight object for a save slot

Fig. 2-11: Add hover highlighting for the quit and resume buttons

Fig. 2-12: Complete the reset action



3
Confirm It

11

3. Confirm It

Deleting or overwriting an existing savegamemust not happen by ac-
cident. That’s why in this versionwe add a confirmation dialog for both
of these actions as well as for our quit button. Of course, you can also
add the confirmation for the load button, but we skip that.

► 1. Add a new interface and name it “Confirmation” (Fig. 3-1).

► 2. In the interface properties, add the background image.

► 3. Assign the interface class “Secondary interface”.

► 4. Since our background image has the size of our game, set the
“Displacement” to “Absolute”and leave the “Offset”at [0,0] to cen-
ter the image on the screen.

► Assign the interface to our main character to
be able to use it (Fig 3-2).

In the “Game properties” (Fig. 3-3):

► 1. Add the action part “Show/Hide interface” to
the game’s start action, choose the “Secondary
Interface”class and select “Hide”. That prevents
the interface from being visible from the be-
ginning.

► 2. Disable “Auto hide interfaces in menu”, else
our confirm dialog stays hidden.

Three tasks

We will use the same confirmation dialog for han-
dling all three tasks: overwrite, delete, and quit.

► Add a value “Selection_confirm” in the “Values”
tab of the interface with an initial value of -1.

This value will store, which of the three tasks is the
current one.We define:

0 = quit / 1 = delete / 2 = overwrite

Depending on that value, we’ll show a different text
on the dialog. Actually they’re just images of text
(Fig. 3-4).

► 1. Add a button called “Text_quit” to the “But-
tons” list.

► 2. Make sure, the “Button type” is “Action area”.

► 3. Link the “selection_confirm”value to the but-
ton and make it validate for “= 0”.

► 4. Add the text image file as “Image (inactive)”
and place it.

► Repeat steps 1 to 4 for the two other texts,
with validation for “= 1”and“= 2”, respectively.

Fig. 3-1: Add an interface for the confirmation dialog

Fig. 3-2: Assign interface to the character

Fig. 3-4: Add text as images (placed on top of one another, but
only one of themwill show)

Fig. 3-3: Don’t hide interfaces in menus, but hide the interface at
game start



Visionaire Studio – Save/Load Tutorial
3. Confirm It

12

Yes and No buttons

The player’s choice of “YES” or
“NO” is painted onto the back-
ground image. We have to turn
those words into buttons and
make them work (Fig. 3-5).

► Add a new button called
“btn_yes”and make sure it’s
an “Action area” type.

► Draw an object area around
the word.

► Add a“Left click”action.

Inside this action, we execute commands depending on the “Selec-
tion_confirm”value:

If “Selection_confirm”= 0
Quit game

Else if “Selection_confirm”= 1
Delete the current savegame

Else if “Selection_confirm”= 2
Save game

End if

Fig. 3-5: Add the yes (confirm action) button

Additionally, we have to add a small piece of Lua
code before deleting and saving. That’s because the
save slots (the rectangular areas we created with
the floppy disk tool in chapter 1.2, not their graphi-
cal representation) get detected by the cursor even
with our confirm interface visible. That means, the
player may accidentally click on one of them after
the confirm dialog opened, thus changing the se-
lected slot without noticing it (because with the
confirm interface overlaying the menu, our save
slot highlighting wouldn’t get triggered).

► Add two“Execute a script”action parts before
the delete and save action parts, respectively,
and enter the following:

This script sets the selected savegame tomatch the
save slot the player chose.

► Likewise, add the execution of the following
script to the “reset_buttons”action:

► Now add a new button called “btn_no”and set
it up just like the yes button (except for the ac-
tion parts).

► Add the following three action parts to the
“Left click”actions of the no button as well as
of the yes button (after the if construct).

Call the “Reset_buttons”action
Reset “Selection_confirm” to -1
Hide the “Secondary interface”

That will reset everything and close the dialog.

system.selectedSavegame =
Values["Value_Saveslot"].Int +
system.savegamesScrollPos

system.selectedSavegame = -1



Visionaire Studio – Save/Load Tutorial
3. Confirm It

13

Like with all other buttons in this tutorial, we’ll add
highlighting for both the yes and no buttons. The
good thing with interface buttons is, you can add
two images to them: one for the inactive and one
for the active state. In our case, the inactive state is
already painted to the background though.

Do the following for both buttons:

► Add the button’s active state image on the “Im-
age (active)” tab.

► Place the image.

► Add an action for the cursor entering the but-
ton area and add the action part “Set active/in-
active image”with the button linked and the
“Active image”option selected.

► Do the same for the mouse leave action, but
with selecting “Inactive image” (even if we
didn’t attach one).

► In the “Left click”action also add the “Set inac-
tive image”action part (see Fig. 3-5).

Connect the confirm dialog

Back in the menu scene, we have to change the ac-
tions for the quit, delete, and save buttons we set
up earlier, because we nowwant to call our confirm
dialog.

► In the quit button’s “Left click”action, delete
the “Quit game”action part and add the fol-
lowing ones:

Set “Selection_confirm” to 0.
Show“Secondary interface”.

► In the delete button’s “Left click”action, delete
the two action parts we added earlier and add
the following ones:

Set “Selection_confirm” to 1.
Show“Secondary interface”.

We don’t have to delete the action parts from the
save button, because saving the game doesn’t
change, unless it’s overwriting an existing save-
game. We need to add an “if” statement and some
other action parts (Fig. 3-6):

► In the save button’s “Left click”action, build the
following setup of action parts (the red ones
were already added before):

If selected savegame exists
Set “Selection_confirm” to 2.
Show“Secondary interface”.

Else
Save game
Set “Selection_confirm” to -1.
Call “reset_buttons”action

End if

Fig. 3-6: Adjusting the save button’s left click action.



14

4
Some Bells &Whistles

4. Some Bells &Whistles

By now, our save/loadmenu is alreadyworking quite nicely. In this final
version we try to slightly enhance the user experience.

4.1 A quicker save
Currently the user has to choose a save slot before being able to save
the game. In most cases he’ll pick the first free slot, so why not create a
savegame in that position, if the player doesn’t choose a slot at all but
only hits the save button?

The first thing to do ismake the save button visible (and thus clickable)
all the time.

► Change the initial state of the “save_possible?” condition to “True”.

► In the “reset_buttons”action, deactivate the action part “Change
condition 'save_possible?' to false”by selecting it, opening the
context menu (right-click) and choosing“Disable” (Fig. 4-1).

You could as well just set the condition to “True” here or remove it com-
pletely from the project, if you don’twant to use it at somepoint to prevent
saving (maybe at game start). That depends on your particular game
setup. We’ll keep it for now, but don’t use it – if only to teach you how to
disable action parts. This possibility may come in handy especially when
testing your game.

Now we extend the save button left click action.
Currently we have an “if” construct to differentiate
between overwriting an existing save slot and sav-
ing in an empty (selected) one. Saving in the first
empty slot will become the third option (Fig. 4-2).

► Add an“Else If value 'value saveslot' = -1”ac-
tion part. – That means, if no slot has been cho-
sen.

► Add a“Save game”action part and one to call
the “reset_buttons”action, like we did for sav-
ing in an empty slot.

► Add an“Execute a script”action part before the
save action part and enter the following:

This selects the first empty save slot (remember
that slot numbering starts with 0).

► Add another “Execute a script”action part after
the save action part and enter the following:

This script will scroll through the save slots, until
the one we just saved in is visible. For example: if
four slots are already occupied and the player saves
(without selecting a slot first), the new savegame
will go into slot five, which may be out of sight.

First we calculate, how many times we have to (vir-
tually) hit that left/right scroll arrow button. The“-3”
works for our 4 slot menu with a scrolling amount
of 1 per click. If your setup is different, you need to
adjust the calculation. The absolute value gets
stored in a Visionaire value called“move_slots”. And
depending on the calculated number being posi-
tive or negative, we call an action that will scroll to
the right or to the left.

► Add a value called “move_slots”on the menu’s
“Values” tab and set the initial value to 0.

system.selectedSavegame = system.savegamesCount

local n = system.savegamesCount -
system.savegamesScrollPos -3

Values["move_slots"].Int = math.abs(n)

if n > 0 then
startAction(Actions["savegame_right"])

elseif n < 0 then
startAction(Actions["savegame_left"])

end

Fig. 4-1: Disable resetting a condition

Fig. 4-2: Extend the save button action



Visionaire Studio – Save/Load Tutorial
4. Some Bells &Whistles

15

► Add a another value called “loops”and set the initial value to 0. –
This will serve as a counting variable.

► On the menu’s “Actions” tab, add a new action called “save-
game_right”. – This action gets called through the above script,
when we need to scroll forward.

► Add the following setup of action parts to
“savegame_right” (Fig. 4-3):

Value 'loops' = 0
If value 'loops' != 'move_slots'
Value 'loops' + 1
Show next savegames
Jump 3 action parts backwards
(Jump relative, -3)
End if
Value 'move_slots' = 0

This creates a loop that scrolls the savegames by the amount stored in
the “move_slots”value.

► Duplicate the action, re-
name it “savegame_left”
and change the third action
part to show the previous
instead of the next save-
games.

The scrolling also makes sense
when deleting a savegame, so
we’ll add it there, too:

► Copy the second“Execute a
script”action part from the
save action and paste it into
the left click action of the
“btn_yes”button of the con-
firmation dialog, just after
“Delete selected savegame”
(Fig. 4-4).

Loop

4.2 Better slot highlighting

Prevent scrolling confusion

What if the player decides to select a save slot und
then – with the slot highlighted – starts to scroll?
The slots will scroll of course, but the highlight
graphic will stay where it is, because there is no real
connection between this graphic and a particular
slot. Remember we just added objects to place the
graphics upon the slots. Thus wewill end up having
a save slot highlighted that is not the (internally
stored) selected one.

Therefor we need to hide the highlighting and reset
the chosen slot whenever one of the scroll button
arrows is clicked. Additionally, we’ll disable the
scroll buttons once we have reached the end of the
savegames list in either direction.

► Add a new“Called by other action”action and
name it “reset_slot”.

► Move the following three action parts from the
“reset_buttons”action to the new one
(Fig. 4-5):

Change condition 'load_delete_possible?' to
false
Value 'Value_Saveslot' = -1
Execute script (where SelectedSavegame is
set to -1)

► In the “reset_buttons”action, add an action
part to call the “reset_slot”action.

We have just “outsourced” three action parts from
our original reset action, so we can call them inde-
pendently through the “reset_slot” action. The “re-
set_buttons”action did effectively not change.

Fig. 4-3: Create a loop to scroll through the save slots step by step

Fig. 4-4: Add the scroll script to the delete savegame action



Visionaire Studio – Save/Load Tutorial
4. Some Bells &Whistles

16

► Change the left click action of the “btn_left”
button as follows (Fig. 4-6):

If lua result

– This ensures, that we’re not already at the
start of the savegame list. If we are, do noth-
ing.
Show previous savegames
If lua result

– This checks, if we’re at the start of the
savegame list, AFTER we scrolled to the left.
If so, we hide the arrow highlighting to indi-
cate that.
Set visibility of “gfx_left” to 0 %
End if
End if
Call action “reset_slot”

The check, whether we have reached the start of
the list, is also required in our arrow button high-
lighting action (Fig. 4-7).

► In the “Cursor enters object area”action of
“btn_left”, wrap the visibility action part in an
“if” construct:

If lua result

Set visibility of “gfx_left” to 100 %
End if

Nowwehave tomake the same adjustments for the
right scrolling button. The difference (besides the
already existing “Show next savegames” instead of
showing the previous ones) is the pieces of Lua
code. We now have to check, whether we have
reached the end of the list (instead of the start).

► Repeat the above steps for “btn_right”but with
the following code changes:

return system.savegamesScrollPos ~= 0

return system.savegamesScrollPos == 0

return system.savegamesScrollPos ~= 0

return system.savegamesScrollPos ~=
system.savegamesCount

return system.savegamesScrollPos ==
system.savegamesCount

Prevent highlighting of unavailable slots

The last enhancement we add to our save/load
menu is related to the “problem” that Visionaire
does not allow for gaps in our savegames list, i. e.
empty save slots in between occupied ones. Actu-
ally, this behaviour is not a real problem but makes
complete sense. Gaps are expendable.

In our current menu it becomes a problem though,
because the player may highlight every slot he
wants – but the engine might save in another one
instead. That’s whywe’ll automatically highlight the
first available slot, if the player selects an inappro-
priate one.

Since it isn’t possible to leave a gap when selecting
the first save slot, we don’t have to change anything
for the “slot_0”object.

Fig. 4-5: Add a second “reset” function

Fig. 4-6: Change the scroll button action

Fig. 4-7: Disable the arrow highlighting when reaching the end of
the savegames list



Visionaire Studio – Save/Load Tutorial
4. Some Bells &Whistles

17

► Change the left click actions for “slot_1”,
“slot_2”, and“slot_3”as follows (Fig. 4-8):

Move the “Set value 'Value_Saveslot'” action
part from the top to below“If savegame be-
low cursor exists”.
Add an“Execute a script”action part below
“Else”with the following Lua code:

Remember that our “Value_Saveslot”value controls
the slot highlighting. In case the player wants to
overwrite an existing savegame, we can set the slot
number they selected, just as we did before.

If the player selects an empty slot (“Else”), we set
the number of the first empty slot. So whatever slot
is selected, the first empty slot gets highlighted, be-
cause that’s where the engine will put it.

local pos = system.savegamesCount -
system.savegamesScrollPos
Values.Value_Saveslot.Int = pos

Fig. 4-8: Modify the slot highlighting

Save/Load Menu created by Esmeralda

Tutorial written by Esmeralda & Einzelkämpfer,
October 2022


